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This paper attempts to explain MHD instabilities observed in aluminium reduction 
cells. The model analysed is a plane horizontal poorly conducting fluid layer, 
sandwiched between two highly conducting semi-infinite layers, the lower one a fluid 
and the upper solid. A uniform normal current passes through all three layers, and the 
stability of small perturbations to the fluid-fluid interface is analysed. Plane waves 
are described which can be of either constant or exponentially growing amplitude, 
depending on the form of the magnetic field due to distant current sources. A model 
of an electric arc furnace in which the upper layer too is fluid is considered, and in 
this case MHD effects can also be destabilizing. 

1. Introduction 
A typical aluminium reduction cell (or (Hall-HBroult cell) carries a current of order 

lo6 A. Associated with this current is a strong magnetic field, and one would expect 
the resulting Lorentz forces to have an important influence on fluid flow in the cell. 
In  essence the cell consists of a layer of molten cryolite (a mixture of sodium and 
aluminium fluorides) floating on a pool of liquid aluminium. Current is passed into 
the cell via a block of carbon immersed in the cryolite, and withdrawn via the liquid 
aluminium (figure 1 a). 

MHD effects can cause difficulties in cell operation (Lympany, Evans & Moreau 
1983). In  particular, Lorentz forces distort the upper surface of the aluminium pool 
so that it adopts a curved shape, making i t  difficult to bring the carbon anode as close 
as possible to the liquid aluminium and hence reduce the cell resistance and power 
consumed. Also, instabilities can occur if the cryolite layer is too thin, resulting in 
contact between the aluminium and the carbon anode, and a dangerous short circuit. 
It is easy to imagine the sort of mechanism that might drive this instability. The 
cryolite layer is a poor electrical conductor in comparison with aluminium or carbon, 
so any perturbation in layer thickness would cause a redistribution of electric 
current - towards and through the narrowest part of the layer. The consequent 
changes in magnetic field and Lorentz forces could set up a flow tending to increase 
the perturbation. 

The magnetic field and current distribution in an aluminium reduction cell are 
complicated (Lympany et al. 1983) and the liquid layers are in motion, so to obtain 
a tractable mathematical problem, some idealization is necessary. In  $92 and 3 we 
consider a model consisting of a plane horizontal fluid layer of low electrical 
conductivity and thickness h, sandwiched between two semi-infinite highly conducting 
layers, the upper one solid (carbon anode) and the lower fluid (liquid aluminium). 
In  the unperturbed state a uniform normal electric current flows through all three 
layers and there is no fluid motion. The lower fluid layer is taken to be denser than 
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Carbon t anode 

FIGURE 1.  ( a )  Schematic diagram of Hall-HBroult cell. ( b )  Diagram of the three-layer system. 

the middle one, so that the stratification is stable. A linear stability analysis is carried 
out, assuming that the perturbation growth time is large compared with the magnetic 
diffusion time over a perturbation wavelength, so that electric current and magnetic 
fields can be calculated by static methods. The unperturbed magnetic field can be 
divided into two parts - a local component due to local currents, and a far component 
due to remote currents. The local component is always stabilizing, reinforcing the 
gravitational restoring force, and giving rise to waves very similar to surface gravity 
waves but with a modified dispersion relation to take account of MHD effects. On 
the other hand the far field can be destabilizing and give rise to waves of exponentially 
growing amplitude. Since the far field imposes a preferred direction, these waves are 
anisotropic and the growth rate depends on the direction of the wavenumber vector. 

Section 4 considers the problem in which all three layers are fluid - a situation that 
occurs in an electric-arc furnace, where the upper layer is ionized gas, the middle layer 
slag, and the lower layer molten metal. The far field can destabilize this system, as 
in an aluminium cell, but the local field will also be destabilizing if sufficiently strong. 

When carrying out a linear stability analysis, one is usually deaing with a 
homogeneous system, so that is possible to find plane-wave solutions which can be 
superposed. A peculiar difficulty of this system is that, since V x B = ,uojol, the 
equilibrium magnetic field cannot be homogeneous, but must vary linearly with 
horizontal position. The Lorentz force perturbation can be expressed, however, as 
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the sum of a purely horizontal component FH and an irrotational component, which 
can be absorbed into the pressure gradient. The elevation of the cryolite-aluminium 
interface is governed by the divergence of the horizontal flow, and hence by V-F,, 
in which term the linear horizontal spatial dependence disappears. Thus i t  is possible 
to find plane waves in which the surface elevation has constant amplitude, while the 
fluid-flow amplitude varies linearly with horizontal position. 

2. Analysis of Lorentz force 
Our aim is to carry out a linear stability analysis of the system consisting of three 

electrically conducting layers of infinite horizontal extent, - co < z < 0, 0 < z < h 
and h < z < co , which we call layers 1 ,2  and 3 respectively (see figure 1 b). A variable 
with a suffix i will be used to denote a value in layer i - for example g1, g2 and g3 
are the electrical conductivities of the three layers. Layers 1 and 2 are fluid (liquid 
aluminium and cryolite) and layer 3 is solid (the carbon anode). The fluids are 
assumed incompressible and inviscid, and surface tension is neglected. 

Equilibrium 

In the equilibrium state a normal current j o Z  passes through all three layers and the 
fluid-fluid interface z = 0 is undisturbed. Since there is no fluid motion, the Lorentz 
force (which must be balanced by a pressure gradient) is irrotational and 

V x ( j O 2 x B , ) = O  or - aBg = 0, i = 1,2. 
aZ . 

The magnetic field must be continuous across any interface, so B is the same function 
of (x, y )  throughout all layers, and the subscript may be omitted without ambiguity. 
For the purpose of analysing local stability we assume B is a linear function of 
position : 

where B, is a constant vector and a,, a constant second-order tensor, which can be 
expressed as the sum of an antisymmetric part a$) and a symmetric part ag). The 
rotational field a{?) xj is due to the local current distribution j,Z, and (2.1) combined 
with Ampbe's law 

V x B = poj0 2 

(2.2) B, = B,* +a,, x,, 

gives 

The irrotational field a$) x, is due to remote current sources, such as the bus bars 
bringing current to the system. Equation (2.1) and the condition that B be solenoidal 
show that a$) must be of the form: 

R O  

where Q and R are constants. Combining (2.3) and (2.4) gives 

Q R-+  0 
aij = p o j 0  R+;  -Q  0 1 .  

[ o  0 0 
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The Lorentz force can be written in the form 

j,(P x B), = jo(P x BOli + j, Et, x,, 

where - R - i  Q 

0 0  

The equilibrium pressure distribution is given by 

where g is the acceleration due to gravity, and the magnetic component of the pressure 

P M  = pojo(L~~o).~+poj~[Q~y-~(z2+y2)+~R(y2-x2)]. 

Current perturbation 
Suppose that the interface z = 0 suffers a small perturbation, so that its equation 
becomes 

where a (4 h) is a constant amplitude, w a (complex) growth rate andf is such that 
f exp ( h kz) is harmonic. For example one could take 

z = a5(x, y, t )  = a eWtf(x, y), 

f = exp[i(k+my)], Z2+m2 = k2, (2.8) 

to represent a plane-wave disturbance, or 

f = J,(kr), r2 = x2+y2, (2.9) 

for a disturbance symmetric about the z-axis. 
If we suppose that the disturbance growth time w-l is large compared with the 

magnetic diffusion time I~-~,u,a, the electric and magnetic fields will be approximately 
static, so that 

V x E = O .  

The usual MHD approximation of neglecting displacement current is also made, so 
that the electric current density j satisfies 

V - j  = 0,  j = aE (Ohm’s law). 

It follows that the current in the three layers can be expressed in the form 

where the functions $, must be harmonic, so that we can write 

(2.10) 

(2.1 1)  

(2.12) 
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The constant coefficients at, p6 are determined from the four equations expressing 
continuity of normal current and tangential electric field across the interfaces 
z = 0, z = h: 

a( 1 - r,) (r2 s+ r,c) a1 = 
(r, + r3 r,) c + (r,  + ri)  9’ 

a, = ae-kn(r3-r2) (i-r2) 
2c(r2+r,r2)+2s(r,+r3’ 

-aekh(r ,+rg) ( i - r , )  
’2 = 2c(r, + r, r3) + 2s(r, + r:) 3 

(2.13) 

(2.14) 

(2.15) 

where r2 = u2/g1, r ,  = g3/g1, and s = sinh kh, c = cosh kh. (The formula for p, is not 
given since it will not be needed,) Of particular interest is the case when the middle 
layer has a much lower electrical conductivity than the other two - i.e. when r2 4 1. 
Then (2.13)-( 2.15) simplify to 

a e-kh -a ekh 
a, = -, ac a, = - 9 B e = T  

8 2s 
(2.16) 

The perturbation magnetic fields due to the current perturbations, are denoted by 
B; and it is easily verified that the following expressions satisfy Amp&re’s law, 
V x B ;  =poj0Vq5$: 

(2.17) 

(2.18) 

#,= -- pojovq5, x 2. 
k 

(2.19) 

Continuity of tangential magnetic field across either interface follows from continuity 
of normal current, and the vertical component of B is unaffected by the perturbation, 
so the above expressions satisfy all necessary equations. 

Body force 
The Lorentz force perturbation F is given by 

F = j’ x B+ j, 2 x B‘. 

For the stability analysis in the following sections we need to know the divergence 
of F, and standard vector identities give 

V * F =  -2p0joji. (2.20) 

For example V.4 = -2,u0jik(q52+-q5;). 

1 F = FE--V(B*B’). 
PO 

We can also write 

where 
1 1 

PO PO 
FH = - (B*V)B’+- (B’mV) B 

(2.21) 

(2.22) 
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is a purely horizontal vector (i.e. has no z-component). Now 

1 j j -V2(B*&) = "V2[B.(V#,  x z)] = "V2[V#,*(z  x B)] PO k k 

(the summation convention applying to  p and u )  since 

V2(2 x B)  = V2(V#,) = 0. 

Equations (2 .6) ,  (2.20),  (2.21) and (2.23) combine to give 

? i O  a2#l - V-FHl = -2poj:k#,+-  - 
k axpi3x, a ~ v '  

(2.23) 

(2.24) 

and a similar equation holds for V-F,,. In  particular, for plane waves when the 
disturbance function f is given by (2 .8)  we find 

(2.25) 

where b = pOj: [R(12 - m2) - 2Qlm - +k2] .  (2.26) 

The first two terms in the square bracket arise from the far magnetic field and the 
third term from the local field. For axisymmetric waves with f given by (2 .9) ,  
equations (2.25) and (2 .26)  remain valid provided we assume that the field due to 
remote current sources is zero, so that Q = R = 0. 

3. Dispersion relations 
The linearized equation of motion in the fluid layers is 

where p is density, u the perturbation velocity and p' the pressure perturbation (the 
viscous term having been neglected). Since the forcing term F is proportional to eot 
we expect u to exhibit the same time dependence, and employing (2.21) we find 

POU = FH-VP, (3 .1)  

where 
1 

PO 
P = p '+-  B . B .  

We assume the fluid to  be incompressible, so that V - u  = 0 and 

V 2 P  = V .  FH. (3.2)  

Equation (3 .1)  provides formulae for u,, u2, but in terms of the unknown functions 
P,, pZ .  The latter can be found by solving (3 .2)  subject to  the boundary conditions 
obt,ained from the continuity of u, and p across the fluid-fluid interface z = 0, and 
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the condition that u, must vanish at the solid interface z = h. To summarize, we must 
solve 2b v2p, = p h ,  (3.3) 

(3.4) 
2b 
k v2p, = - ($q-&), 

( m p o - ( < ) Z - o  = -APgaL AP = P1-P2, (3.6) 

(2) =o.  (3.7) 
z-h 

The first two equations are derived by combining (3.2) and (2 .25) .  Obvious particular 
integrals of (3.3) and (3.4) are 

so we try general solutions 

(3.8) 
bz bz e = $4+AA,  PB = (#: +9,,+w,+ +C&, 

where A,  B and C are arbitrary constants to be determined from the three linear 
simultaneous equations (3.5)-(3.7). In particular, when layer 2 is weakly conducting, 
we can use (2.16) and find 

where p = pa/pl.  

fluid-fluid interface : 
The dispersion relation is obtained from the kinematic boundary condition on the 

or 

awt = (u,),,, = 

u2 = -2 ($+ kA) .  (3.10) 

For simplioity we consider only the case of a weakly conducting layer 2 ,  when we 
can substitute (3.9) into (3.10) to find 

(3.11) 

When j, = 0 and there are no MHD effects, (3.11) reduces to the gravity-wave 
dispersion relation. A positive value of oa corresponds to instability, so the effect of 
the currents is stabilizing if b < 0 and destabilizing if b > 0. From (2.26) we see that 
the term -ika, which arises from the local rotational magnetic field, is always 
stabilizing. If Q = R = 0 

= * [‘ioji k h  + AP gks’]! 
Pa cs + P1 s2 

, 
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for plane waves with wavevector k = ( I ,  m, 0). The corresponding formula for 
axisymmetric waves is identical. 

On the other hand, the effect of the far field can be destabilizing. Since 

R(l2-m2)-2Q1m = -k,ai;) kf', 

where kP = k x 2, the expression on the left-hand side is invariant and can be most 
conveniently evaluated in the principal axes O X  Y' of the tensor a$). The eigenvalues 
are & (Q2 + R2)f = f a ,  say, and we suppose that the x' direction corresponds to the 
positive eigenvalue. One fhds that 

b =poj:k2(a sin2x-+), (3.12) 

where x is the angle between the z' axis and k. The fastest-growing instability occurs 
when x = in. 

Group velocity of stable waves 

When the system is stable, the dispersion relation for plane-wave disturbances 
proportional to exp [i(k*x-Dt)] can be found by combining (3.11) and (3.12): 

Ap gks2 + $xo ji kch( 1 - 2a sin 231) 
QS = 

P2 cs+ P1 Q2 

When a = 0, D2 depends on only the magnitude of k and the dispersion is isotropic, 
the group velocity being parallel to and smaller in magnitude than the phase velocity, 
as for gravity waves. When a > 0 the far field imposes a preferred direction. This 
anisotropy is most extreme when p1 = p2, kh < 1 and 

poi: 1 2al'm' 
(2 k2 )' P1 P1 

Q2 x - (2-a s i n 2 ~ )  = - (3.13) 

where l', m' are the components of k relative to the principal axes of a$). Now SZ 
depends on only the direction of k and the group velocity 

is perpendicular to k so that energy is propagated along the wave crests. If a = 0, 
so that the only force tending to restore layer disturbances is that due to the local 
magnetic field, then cg = 0 and a local disturbance will not propagate. Generally 
cg will have components both parallel and perpendicular to k. 

Flow field 

In order to visualize the fluid flow associated with these plane waves we consider a 
simple case with no far magnetic field (Q = R = 0), and also eliminate the effect of 
density differences by setting p1 = p2. For these waves o is purely imaginary = - iQ, 
say. Using (2.2), (2.3), (2.10), (2.16), (2.22), (3.1), (3.8) and (3.9), we find 

2p1 u1 = ekz k(h' - z )  cos (kz - Qt)  2 
a1 l u 0 2  

+ekzky sin(kz-Qt)9+ekz k(h'-z) sin(kz-Dt)L, (3.14) 
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where the constant h’ = h e-kh, and the x-axis has been chosen parallel to k. (By a 
suitable choice of origin, the constant term Bo in the magnetic-field expansion (2.1), 
can be taken to be zero.) The streamlines for the flow at t = 0 have equations 

x = k-1 c0s-l ( K ,  e-kz), y = k(z-h’) K2 , (3.15a, b )  

where K,, K2 are arbitrary constants. The families of curves given by (3.15) are 
sketched in figure 2. Streamlines beginning on the plane y = 0 remain on that plane, 
while those beginning from points where y is non-zero lie on the hyperbolic surface 
whose equation is (3.15b). 

Assuming that the amplitude a is small enough so that the fluid particles deviate 
only slightly from their mean positions, we can also use (3.14) to find the fluid-particle 
paths. If (zp, yp, zp) denotes the position of a fluid particle whose mean position is 
(2, y, 2) then 

xp = x-a‘ ekzk(h’-z) sin(kz-Qt), 

yp = y+a’ekZkycos(kx-Qt), 

zp = z+a’ ekz k(h’-z)  cos (kz-Qt), 

where a’ = alp0j~/2p1Q2. Fluid particles in the plane y = 0 move in circles whose 
radii decrease with depth (just as in surface gravity waves). Particles not on y = 0 
move in elliptical paths, which lie in planes inclined at an angle tan-’ [y/(h’ -2)] to 
y = 0. These paths are sketched in figure 3. 

4. Three fluid layers 
The problem in which layer 3 is a fluid is also of interest, since this is a model of 

the electric-arc furnace. Now there are two fluid-fluid interfaces, z = 0 and z = h, and 
for a plane-wave disturbance the perturbed surface equations will be 

z = 7, = a, exp[i(Zz+my)+wt], 

z = h+q2 = h+a2 exp[i(lz+my)+ot], 

(4.1) 

(4.2) 

where a, and a2 are (small) complex amplitudes. The corresponding electric-current 
perturbations are given as before by (2.10)-(2.12), and the unknown coefficients a,, 
a2, p2, BB are found by solving the four simultaneous equations expressing continuity 
of normal current and tangential electric field across the two interfaces. When layer 
2 is weakly conducting (r2 Q 1) the solutions are 

a2 - a, ekh 
a2 ) B 2  = 28 . 

a,c-a2 a, e-kh- 
a 2  = 2s a, = - 7 

S 
(4.3) 

The corresponding magnetic-field perturbations are given by (2.17)-(2.19). As before, 
we divide the Lorentz-force perturbation F into a horizontal component and an 
irrotational component, so that the linearized equations of fluid motion are 

The functions pi must satisfy the Poisson equations 
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Undisturbed surface z = 0 \ \ \  . .-n 

Streamlines in 
plane y = 0 

FIGURE 2. Streamlines in layer 1 viewed from (-3,  - 1 ,  -3), when the far field is zero and the 
wavenumber vector in the direction of the positive x-axis. 

Y 

FIGURE 3. Particle paths in layer 1 viewed from (-5, - 3,5), when the far field is zero and the 
wavenumber vector in the direction of the positive z-axis. In the plane y = 0 the paths are circles. 
Elsewhere they are tilted ellipses. 

which have general solutions 

where A, B, G and D are arbitrary constants. The continuity of normal velocity and 
pressure across the two interfaces together with the two kinematic boundary 
conditions (u, = aq/at) provide a linear homogeneous system of six equations in the 
six variables Aa,, Ba,, C& D& a, and a,. The condition that the coefficient 
determinant vanish yields the dispersion relation. Since we are modelling an arc 
furnace, in which the upper layer (layer 3) is an ionized gas, a reasonable simplification 
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is to set p3 = 0. We also assume p, < p1 (slag density < liquid-steel density) so that 
the stratification is stable. The dispersion relation obtained is 

Equation (4.4) can be written in non-dimensional form as 

w ' ~ ~ ( c + s ~ )  + w ' ~ ~ ( s +  C )  - Js-'1 +p(  1 - p )  S- Js-' - J's-' = 0, (4.5) 

where 

and 

"2 P2 

gk'  P1 
p = - ,  "'2 = - 

is a dimensionless measure of the current strength. 
Equation (4.5) is a quadratic in d2, and it can be shown by simple algebra that 

the discriminant is positive, so that the roots are always real. Positive roots 
correspond to unstable disturbances and negative roots to neutrally stable or 
wavelike ones. Since the coefficient of d4 is positive there will always be a positive 
root if the constant term is negative. There might also be a positive root if the 
constant term were positive and the coefficient of d2 negative, but some simple 
algebra can eliminate this possibility. Thus the condition for stability is: 

P+ J - p (  1 -p )  < 0, 

or J ,  < J < J,, (4.6) 

where J ,  = -+{[l+4s2p(1-p)]t+1}, J ,  = +{[l+4s2p(l-p)]:-l}. 

A particularly simple case occurs when the density ratio p = t ,  and J1 = - t ( c +  l ) ,  
J,  = $(c- 1). Figure 4 shows graphs of J ,  and J,  against dimensionless wavenumber 
kh, indicating the stable and unstable regions. MHD effects are most destabilizing 
for long wavelengths (kh < l),  when J ,  = - 1 and J ,  = 0. For very short wavelengths 
MHD effects are negligible, and the density stratification provides stability. It is 
interesting that the stability depends on the density ratio p in a symmetric way, and 
that gravity exerts the greatest stabilizing influence when p = f. If p = 1 or 0 this 
stabilizing influence will be absent from the lower or upper interface respectively, and 
the stability condition is just - 1 < J < 0 - independent of wavelength. 

If (3.1 1) is also non-dimensionalized the stability condition for the aluminium cell 
model (layer 3 rigid) becomes 

which is similar in form to the stability condition (4.6) for positive J ,  namely 
(4.7) 

J < ${[1+4~~p(l-p)]?-l}.  (4.8) 

J < (1  - p )  S2/c, 

When the far magnetic field gives rise to a positive b, and hence positive J ,  then in 
both cases instability can occur for any given wavenumber, provided the layer depth 
h is small enough. Since J is proportional to h, maintaining k fixed and decreasing 
h corresponds to moving inward along the line L in figure 4, from a stable region to 
an unstable one, and eventually violating (4.8). A similar argument holds for (4.7). 
The novel feature of the arc furnace or all-fluid problem is that instability is also 
possible for J < - 1, so that local currents can be destabilizing if sufficiently strong - if 
poji  > 2p,g/h for example, in the case of zero far field. 
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FIGURE 4. Stability of the three-fluid-layer system. The solid curves correspond to p = 4, which 
is the widest stability region, and the dashed curves to p = 0.1 or 0.9. 

FIGURE 5. Forms of unstable disturbances to the three-fluid-layer system. In (a) J > 0 and the 
disturbance is of the sausage type, and in (a) J < - 1 and it is of the kink type. 

The calculations involved in finding the dispersion relation also show that 

’= a --(J+P) 
a, d 2 ( c  + sp) + c( 1 - p )  ’ 

Thus positive-J instabilities are of the ‘sausage’ type - a, and a, having opposite 
signs - whereas the negative-J instabilities are of the ‘kink’ type, since J < - 1 (see 
figure 5). 

5. Discussion 
The dispersion relation (3.11) shows that the criterion for instability is 

bchlk > Apgks,. 

We can write b = b’poj:k2, where b’ is a dimensionless number of order unity, and 

h cosh kh Ap g the condition then becomes 
>- (5.1) sinh2 kh b’p,, ji. 
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Inserting typical values (in SI units) Ap = lo3, g = 10, po = 4x x lo-' andj, = 2 x lo4, 
(5.1) gives 

hcoshkh 20 
sinh2 kh ' 7 

as the instability condition. The cryolite-layer depth h is typically of order 4 x m, 
so if kh is large the left-hand side of (5.2) will be small. Thus, small-wavelength 
disturbances will be stable. On the other hand, if kh is small the left-hand side will 
be approximately (keh)-l, so instability is possible for long wavelengths, say of order 
1 m, which is still somewhat less than the dimension of a typical cell - namely 3 x 8 m. 
It can be seen that the neglect of surface tension is justified, since we are most 
interested in longer wavelengths, where MHD effects are important. 

Since the left-hand side of (5.2) tends to infinity as h+O, instability is always 
possible for a narrow-enough cryolite layer. The reason is that the stabilizing 
buoyancy force is proportional to the absolute magnitude a of the surface displacement, 
but changes in current and magnetic field (caused by the tendency of the current to 
flow through the narrow part of the layer) will vary as the relative change in layer 
resistance - i.e. as a /h .  Thus for small h MHD forces will dominate. 

Wave damping due to viscosity has also been neglected. Equation (73) of Lighthill 
(1978) shows that in the long-wavelength limit the damping factor (or proportional 
loss of amplitude over each wave period) due to energy dissipation in the viscous 
boundary layer adjacent to the rigid surface is 

where u is the cryolite viscosity. Unless MHD effects completely overwhelm gravity, 
we can set o zi k(gh)!, so, if h = 4 x 10+ and the wavelength 1 m, the damping factor 
is 39.6~4. The value of u is uncertain since the flow in the cryolite layer is turbulent, 
and some sort of eddy viscosity might be appropriate - in which case viscous damping 
could be a significant stabilizing influence. 

We have also neglected changes in the buoyancy force due to  thermal effects. If 
Aj, represents a typical change in the current density, then the change A F  in the 
Lorentz force is given by 

where L is wavelength. The change in buoyancy force due to the local change in ohmic 
heating over a wave period is given by 

LW = po j, 4, L, 

where aE is the volume expansion coefficient and c, the specific heat per unit volume 
of the cryolite. (Heat diffusion, which will tend to smooth out local temperature 
changes, has been neglected, so we are overestimating thermal effects.) Thus 

so thermal effects will be less important than MHD effects. 
It is now possible to examine the validity of the magnetostatic approximation 

o-l 9 k-2p,a (5.3) 
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made when calculating the perturbation electric current and magnetic fields. 
Assuming that MHD effects are a t  least as important as buoyancy (which is the 
situation of interest), it then follows from (3.11) and (2.21) that 

6 9  x poji khcls 
P 2 C + P I S  

If we assume kh is small and substitute typical values for jo, p2, and B (we use the 
value for liquid aluminium, since this has the highest conductivity and is therefore 
the layer through which the magnetic field diffuses most slowly) then (5.3) reduces 

k2 > 8.8 m+. to the condition: 

This condition will be satisfied for wavelengths less than about 1 m (when 
k = 2n m-l), which is the area of interest. 

The most-unrealistic assumptions made in this analysis are probably that of a 
uniform normal current, and no fluid motion in the unperturbed state. Also we have 
neglected the effects of lateral boundaries. The linear spatial variation in the 
amplitude of u (see e.g. (3.14)) means that reflection of a wavenumber k from a lateral 
boundary would excite the whole spectrum of possible wavenumbers. To discuss the 
stability of a bounded system, all wavenumbers would have to be considered 
simultaneously. 

Finally, it  is interesting that the stability of the system depends on the form of 
the magnetic field due to far current sources (see (3.11) and (3.12)). Lympany et al. 
(1983) found that the way in which the current is delivered and withdrawn from the 
cell has an important influence on the shape of the liquid aluminium surface, and it 
appears that the geometry of these connections may also influence the stability of 
that surface shape. Without performing extensive numerical magnetic-field calcula- 
tions, it would be difficult say exactly how the design of the Hall-HQroult cell should 
be modified to minimize MHD instabilities. Roughly speaking, the cell should be made 
as symmetrical as possible to eliminate horizontal gradients in the far field. For a 
circular cell, with current fed in and withdrawn by a axisymmetric system of 
conductors, the far-field gradient would be zero at least at the centre, but could not 
be eliminated near the edges. 

I am indebted to a referee for suggesting the method of resolving the magnetic field 
into local and far components. 
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